Coupled oscillations enable rapid temporal recalibration to audiovisual asynchrony


" Here we show that the physiological mechanism of rapid, context-dependent recalibration builds on interdependent pre-stimulus cortical rhythms in sensory brain regions. Using magnetoencephalography, we demonstrate that individual recalibration behavior is related to subject-specific properties of fast oscillations (>35 Hz) nested within a slower alpha rhythm (8–12 Hz) in auditory cortex. We also show that the asynchrony of a previously presented audiovisual stimulus pair alters the preferred coupling phase of these fast oscillations along the alpha cycle, with a resulting phase-shift amounting to the temporal recalibration observed behaviorally. These findings suggest that cross-frequency coupled oscillations contribute to forming unified percepts across senses." {Credits 1}

{Credits 1} 🎪 Lennert, T., Samiee, S. & Baillet, S. Coupled oscillations enable rapid temporal recalibration to audiovisual asynchrony. Commun Biol 4, 559 (2021). This article is licensed under a Creative Commons Attribution 4.0 International License.


Last modified on 05-Jun-20

/ EMMIND - Electromagnetic Mind